Upper crustal azimuthal anisotropy across the contiguous U.S. determined by Rayleigh wave ellipticity

نویسندگان

  • Fan-Chi Lin
  • Brandon Schmandt
چکیده

Constraints on upper crustal seismic anisotropy provide insight into the local stress orientation and structural fabric, but such constraints are scarce except in areas with dense recordings of local seismicity. We investigate directionally dependent Rayleigh wave ellipticity, or Rayleigh wave H/V (horizontal to vertical) amplitude ratios, between 8 and 20 s period across USArray to infer azimuthal anisotropy in the upper crust across the contiguous U.S. To determine the H/V ratios, we use all available multicomponent ambient noise cross correlations between all USArray stations operating between 2007 and 2013. In many locations, the observed H/V ratios are clearly back azimuth dependent with a 180° periodicity, which allows the fast directions and amplitudes of upper crustal anisotropy to be determined. The observed patterns of anisotropy correlate well with both near-surface geological features (e.g., the Intermountain Seismic Belt and Appalachian-Ouachita collision belt) and a previous stress model.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distinct crustal isostasy trends east and west of the Rocky Mountain Front

Seismic structure beneath the contiguous U.S. was imaged with multimode receiver function stacking and inversion of Rayleigh wave dispersion and ellipticity measurements. Crust thickness and elevation are weakly correlated across the contiguous U.S., but the correlation is ~3–4 times greater for separate areas east and west of the Rocky Mountain Front (RMF). Greater lower crustal shear velociti...

متن کامل

Seismic velocity structure and depth-dependence of anisotropy in the Red Sea and Arabian shield from surface wave analysis

[1] We investigate the lithospheric and upper mantle shear wave velocity structure and the depth-dependence of anisotropy along the Red Sea and beneath the Arabian Peninsula using receiver function constraints and phase velocities of surface waves traversing two transects of stations from the Saudi Arabian National Digital Seismic Network. Frequency-dependent phase delays of fundamental-mode Lo...

متن کامل

New constraints on the arctic crust and uppermost mantle : surface wave group velocities , P n , and S n

We present the results of a study of surface wave dispersion across the Arctic region (>60◦N) and compare the estimating group velocity maps with new maps of the body wave phases Pn and Sn. Data recorded at about 250 broadband digital stations from several global and regional networks were used to obtain Rayleigh and Love wave group velocity measurements following more than 1100 events with mag...

متن کامل

Joint inversion of Rayleigh wave phase velocity and ellipticity using USArray: Constraining velocity and density structure in the upper crust

[1] Rayleigh wave ellipticity, or H/V ratio, observed on the surface is particularly sensitive to shallow earth structure. In this study, we jointly invert measurements of Rayleigh wave H/V ratio and phase velocity between 24–100 and 8–100 sec period, respectively, for crust and upper mantle structure beneath more than 1000 USArray stations covering the western United States. Upper crustal stru...

متن کامل

Stratification of anisotropy in the Pacific upper mantle

[1] On the basis of the use of broadband (25–150 s) Rayleigh wave group speeds to estimate the 2y component of azimuthal anisotropy, we present evidence for a stratification of anisotropy in the uppermost mantle at large scales across the Pacific basin. We confirm previous surface wave studies that established that the fast axis directions of azimuthal anisotropy for intermediateand long-period...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014